首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合样本自动数据增强技术的半监督学习方法
引用本文:许华杰,陈育,杨洋,秦远卓. 基于混合样本自动数据增强技术的半监督学习方法[J]. 计算机科学, 2022, 49(3): 288-293. DOI: 10.11896/jsjkx.210100156
作者姓名:许华杰  陈育  杨洋  秦远卓
作者单位:广西大学计算机与电子信息学院 南宁 530004;广西多媒体通信与网络技术重点实验室 南宁 530004,广西大学计算机与电子信息学院 南宁 530004,广西大学土木建筑工程学院 南宁 530004
基金项目:崇左市科技计划项目;广西壮族自治区科技计划项目
摘    要:基于一致性的半监督学习方法通常使用简单的数据增强方法来实现对原始输入和扰动输入的一致性预测.在有标签数据的比例较低的情况下,该方法的效果难以得到保证.将监督学习中一些先进的数据增强方法扩展到半监督学习环境中,是解决该问题的思路之一.基于一致性的半监督学习方法MixMatch,提出了基于混合样本自动数据增强技术的半监督学...

关 键 词:半监督学习  一致性  图像分类  自动数据增强  混合样本

Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques
XU Hua-jie,CHEN Yu,YANG Yang,QIN Yuan-zhuo. Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques[J]. Computer Science, 2022, 49(3): 288-293. DOI: 10.11896/jsjkx.210100156
Authors:XU Hua-jie  CHEN Yu  YANG Yang  QIN Yuan-zhuo
Affiliation:(College of Computer and Electronic Information,Guangxi University,Nanning 530004,China;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,China;College of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China)
Abstract:Consistency-based semi-supervised learning methods typically use simple data augmentation methods to achieve consistent predictions for both original inputs and perturbed inputs.The effectiveness of this approach is difficult to be guaranteed when the proportion of labeled data is relatively low.Extending some advanced data augmentation method in supervised learning to be used in a semi-supervised learning setting is one of the ideas to solve this problem.Based on the consistency-based semi-supervised learning method MixMatch,a semi-supervised learning method AutoMixMatch based on automated mixed sample data augmentation techniques is proposed,which uses a modified automatic data augmentation technique in the data augmentation phase,and a mixed-sample algorithm is proposed to enhance the utilization of unlabeled samples in the sample mixing phase.The performance of the proposed method is evaluated through image classification experiments.In image classification benchmark datasets,the proposed method outperforms several mainstream semi-supervised classification methods in three labeled sample proportions,which validates the effectiveness of the method.In addition,the proposed method performs better with a very low proportion of labeled data to the training data(only 0.05%),and the classification error rate of the proposed method on the SVHN dataset is 30.17%lower than that of MixMatch.
Keywords:Semi-supervised learning  Consistency  Image classification  Automated data augmentation  Mixed sample
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号