首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间加权改进的LDTW算法
引用本文:朱紫纯,吕盛坪,廖鑫婷,江城,罗勇. 基于时间加权改进的LDTW算法[J]. 计算机应用研究, 2022, 39(4). DOI: 10.19734/j.issn.1001-3695.2021.09.0401
作者姓名:朱紫纯  吕盛坪  廖鑫婷  江城  罗勇
作者单位:华南农业大学 工程学院,广州510642
基金项目:广东省自然科学基金资助项目
摘    要:在时间序列相似性度量研究中,动态时间弯曲(dynamic time warping,DTW)是最为常用的算法之一,但其存在病态对齐问题且未考虑时间属性影响。限制对齐路径长度DTW(DTW under limited warping path length,LDTW)和时间加权DTW(time-weighed DTW,TDTW)分别尝试解决上述两个问题中的一个,但未能同时解决DTW两方面的不足。为此提出一种综合时间权重的LDTW(time-weighting LDTW,TLDTW)算法。首先通过测量两个时间序列中时间点对的距离构建时间权值矩阵;然后在LDTW累计成本矩阵递归填充过程中融合对应的时间权值,以实现在考虑时间因素影响的同时保留有效抑制病态对齐特性。基于UCR数据集进行1-NN分类实验,实验结果显示基于TLDTW相似度量的分类准确率优于其他对比算法,且进一步对比验证了其可靠性。

关 键 词:时间序列  动态时间弯曲  病态对齐  时间加权  相似度度量
收稿时间:2021-09-13
修稿时间:2022-03-14

Improved LDTW algorithm based on time-weighting
zhuzichun,lvshengping,liaoxinting,jiangcheng and luoyong. Improved LDTW algorithm based on time-weighting[J]. Application Research of Computers, 2022, 39(4). DOI: 10.19734/j.issn.1001-3695.2021.09.0401
Authors:zhuzichun  lvshengping  liaoxinting  jiangcheng  luoyong
Affiliation:South China Agricultural University College of Engineering,,,,
Abstract:DTW is one of the commonly used algorithms in time series similarity measurement. However, DTW has the shortcoming of pathological alignment and ignores the influence of time attribute. LDTW and TDTW have been proposed to handle two shortcomings of DTW separately, however they cannot be solved simultaneously by LDTW or TDTW independently. This paper proposed TLDTW algorithm. Firstly, it constructed time weight matrix by measuring the distance between points in two series. Secondly, it fused the corresponding time weights from time weight matrix into the recursive filling procedure for cumulative cost matrix of LDTW, thus it considered the time attribute and the problem of pathological alignment could still be suppressed. It conducts 1-NN classification experiment based on UCR dataset, and experimental results show that the classification accuracy based on TLDTW is better than other compared algorithms, and the reliability of TLDTW is verified by further comparison.
Keywords:time series   dynamic time warping   pathological alignment   time-weight   similarity measurement
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号