首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线双边拍卖的分层联邦学习激励机制
引用本文:杜辉,李卓,陈昕. 基于在线双边拍卖的分层联邦学习激励机制[J]. 计算机科学, 2022, 49(3): 23-30. DOI: 10.11896/jsjkx.210800051
作者姓名:杜辉  李卓  陈昕
作者单位:网络文化与数字传播北京市重点实验室(北京信息科技大学) 北京 100101;北京信息科技大学计算机学院 北京 100101,北京信息科技大学计算机学院 北京 100101
基金项目:国家自然科学基金;北京市青年拔尖人才项目;网络与文化传播北京市重点实验室开放课题
摘    要:在分层联邦学习中,能量受限的移动设备参与模型训练会消耗自身资源.为了降低移动设备的能耗,文中在不超过分层联邦学习的最大容忍时间下,提出了移动设备能耗之和最小化问题.不同训练轮次的边缘服务器能够选择不同的移动设备,移动设备也能够为不同的边缘服务器并发训练模型,因此文中基于在线双边拍卖机制提出了ODAM-DS算法.基于最优...

关 键 词:分层联邦学习  能耗最小化  在线双边拍卖  最优停止理论  激励机制设计

Incentive Mechanism for Hierarchical Federated Learning Based on Online Double Auction
DU Hui,LI Zhuo,CHEN Xin. Incentive Mechanism for Hierarchical Federated Learning Based on Online Double Auction[J]. Computer Science, 2022, 49(3): 23-30. DOI: 10.11896/jsjkx.210800051
Authors:DU Hui  LI Zhuo  CHEN Xin
Affiliation:(Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(Beijing Information Science&Technology University),Beijing 100101,China;School of Computer Science,Beijing Information Science&Technology University,Beijing 100101,China)
Abstract:In hierarchical federated learning,energy constrained mobile devices will consume their own resources for participating in model training.In order to reduce the energy consumption of mobile devices,this paper proposes the problem of minimizing the sum of energy consumption of mobile devices without exceeding the maximum tolerance time of hierarchical federated learning.Different training rounds of edge server can select different mobile devices,and mobile devices can also train models under different edge servers concurrently.Therefore,this paper proposes ODAM-DS algorithm based on an online double auction mechanism.Based on the optimal stopping theory,the edge server is supported to select the mobile device at the best time,so as to minimize the average energy consumption of the mobile device.Then,the theoretical analysis of the proposed online double auction mechanism proves that it meets the characteristics of incentive compatibility,individual rationality and weak budget equilibrium constraints.Simulation results show that the energy consumption of ODAM-DS algorithm is 19.04%lower than that of the existing HFEL algorithm.
Keywords:Hierarchical federated learning  Minimization of energy consumption  Online double auction  Optimal stopping theory  Incentive mechanism design
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号