首页 | 本学科首页   官方微博 | 高级检索  
     

基于VAE-D2GAN的涡扇发动机剩余使用寿命预测
引用本文:徐硕,侯贵生. 基于VAE-D2GAN的涡扇发动机剩余使用寿命预测[J]. 计算机集成制造系统, 2022, 28(2): 417-425. DOI: 10.13196/j.cims.2022.02.008
作者姓名:徐硕  侯贵生
作者单位:山东科技大学 经济管理学院,山东 青岛 266590
摘    要:为了提高涡扇发动机剩余使用寿命的预测精度,提出一种将变分自编码器(VAE)和双判别器对抗式生成网络(D2GAN)相结合的预训练特征提取模型。在该模型中,VAE作为D2GAN的生成器参与模型训练,形成双重嵌套生成结构,以提高中间特征的提取质量;利用长短时记忆网络进一步挖掘所提取特征的时序退化信息,预测发动机剩余使用寿命。为了验证所提模型的高效性,将模型在通用数据集上进行测试,并与当前最先进的研究比较,结果显示所提模型具有更优秀的预测表现,极大提高了发动机系统的安全性。

关 键 词:深度学习  剩余使用寿命预测  变分自编码器  双判别器对抗式生成网络  涡扇发动机

Remaining useful life prediction of turbofan engine based on VAE-D2GAN model
XU Shuo,HOU Guisheng. Remaining useful life prediction of turbofan engine based on VAE-D2GAN model[J]. Computer Integrated Manufacturing Systems, 2022, 28(2): 417-425. DOI: 10.13196/j.cims.2022.02.008
Authors:XU Shuo  HOU Guisheng
Affiliation:(School of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China)
Abstract:To improve the prediction accuracy of Remaining Useful Life(RUL)of turbofan engines,a pre-training feature extraction model combining Variational Autoencoder(VAE)with Dual Discriminator Generative Adversarial Nets(D2GAN)was proposed.As the generator of D2GAN,VAE participated in the model training to form a double nested generation structure to improve the quality of intermediate feature extraction.Long Short-Term Memory Networks(LSTM)was designed to further capture the time-series degradation information from the extracted features to predict the engine RUL.To verify the efficiency of the proposed method,the proposed model was tested on a common dataset and compared with several current state-of-the-art studies.The results showed that the proposed model had achieved better prediction performance,which greatly improved the safety of engine system.
Keywords:deep learning  remaining useful life prediction  variational autoencoder  dual discriminator generative adversarial nets  turbofan engine
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号