首页 | 本学科首页   官方微博 | 高级检索  
     

Rheological Behaviour for Polymer Melts and Concentrated Solutions Part Ⅲ: A New Multiple Entanglement Model to Predict the Dependence of Linear Viscoelastic Function (η_0, Ψ_(10)~0,η_(ext)~0) on the Ranges of Primary Molecular Weights and the
摘    要:

收稿时间:1995-05-28

Rheological Behaviour for Polymer Melts and Concentrated Solutions Part Ⅲ: A New Multiple Entanglement Model to Predict the Dependence of Linear Viscoelastic Function (η_0, Ψ_(10)~0,η_(ext)~0) on the Ranges of Primary Molecular Weights and the
Authors:Mingshi SONG and Jincai YANG Yiding SHEN
Affiliation:Mingshi SONG and Jincai YANG (Research Institute of Polymeric Materials,Beijing University of Chemical Technology,Beijing,,China)Yiding SHEN(North West Institute of Light Industry,Shanxi Xianyang,,China)
Abstract:It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer chain and the sequence distribution of constituent chains in entanglement spacings. A unified quantity for the three combing factors is the average constrained dimensional number of constituent chains in the long entanglement spacings (v). A new relation of v to the primary molecular weight and the number of testing polymers were derived from the multiple entanglement and reptation model, and a new method for determining v was proposed. The dependences of linear viscoelastic functions on the primary molecular weight and its distribution were derived by the statistical method. When Mn=6Me to 18 Me, the values of (v) can range from 3.33 to 3.70. Their values are in a good agreement with the experiment data, and it can slightjy vary with the different species of polymers and the different ranges of molecular weight of polymers
Keywords:
点击此处可从《材料科学技术学报》浏览原始摘要信息
点击此处可从《材料科学技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号