首页 | 本学科首页   官方微博 | 高级检索  
     


Light emission from oxygen covered Al and Cu surfaces
Authors:C S Lee  Z M Lin  Z M Yen and C H Lin
Affiliation:

Department of Physics, National Central University, Chungli 320, Taiwan, ROC

Abstract:Ion beam induced light emission is used to investigate the sputtering yield, SO, of oxygen atoms on the surfaces of a polycrystalline copper and an Al(1 1 1) target. Under Ar+ and Ne+ ion bombardment of Al(1 1 1) and polycrystalline copper targets, spectral lines of Cu I and Al I emitting from sputtered excited atoms are measured as a function of the oxygen partial pressure, wavelength and beam energy. The light emission for two Al I lines (3082 and 3962 Å) and Cu I lines (3247 and 3274 Å) are proportional to the oxygen partial pressure (not, vert, similar1×10?4 Torr). Above 2×10?4 Torr, the light intensities start to decrease which is consistent with other measurements. From saturated-oxygen covered target surfaces, light intensities of Al I and Cu I lines are measured as a function of time and oxygen partial pressures. The sputtering yields could be determined from the curves of spectral lines directly. For 10 and 20 keV Ar+ ions bombarding the copper surface, the oxygen sputtering yields are 0.34 and 0.22 (atoms/ion), respectively. The same copper target was bombarded by Ne+ ions at 5 and 10 keV, the oxygen sputtering yields are 0.87 and 0.59, respectively. For 10, 15, and 20 keV Ar+ bombarding an Al(1 1 1) target, the obtained sputtering yields are 0.44, 0.31, and 0.2 (atoms/ion), respectively.
Keywords:BLE  Ion–surface interaction  Sputtering  The sticking coefficient
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号