首页 | 本学科首页   官方微博 | 高级检索  
     

多小波系数增强动态聚合联邦深度网络的多工况故障诊断
引用本文:张 焱,何姝钡,韩 延,黄庆卿. 多小波系数增强动态聚合联邦深度网络的多工况故障诊断[J]. 电子测量与仪器学报, 2023, 37(5): 68-78
作者姓名:张 焱  何姝钡  韩 延  黄庆卿
作者单位:1. 重庆邮电大学工业物联网与网络化控制教育部重点实验室,2. 重庆邮电大学工业互联网研究院
基金项目:中国博士后科学基金(2022MD713687)、国家自然科学基金(51705056)、重庆市自然科学基金面上项目( cstc2021jcyj-msxmX0556)、重庆市教委科学技术研究项目(KJQN202100612)资助
摘    要:针对分布式场景下单节点样本有限、多节点间工况分布不平衡等导致的深度学习故障诊断精度低的问题,提出一种多小波系数增强动态聚合联邦深度网络用于分布式小样本下的多工况机械故障诊断。提出多小波系数增强动态聚合联邦深度网络的诊断框架,单终端节点从本地样本中提取小波系数特征,提出多小波系数深度网络融合的特征增强方法,局部模型从多样性小波系数集合中提取更具判别性故障特征;聚合节点通过对多终端节点局部模型的聚合以构建全局联邦深度网络模型,并用于多工况故障诊断;为降低多节点间数据非独立同分布的影响,提出平衡模型贡献度的联邦动态加权聚合算法。轴承振动数据分析结果表明,所提方法能在分布式小样本条件下实现高精度的多工况故障诊断。

关 键 词:故障诊断  小样本  多工况  联邦学习  特征增强

Multi-wavelet coefficients enhanced dynamic aggregation federal deep network for fault diagnosis under multiple conditions
Zhang Yan,He Shubei,Han Yan,Huang Qingqing. Multi-wavelet coefficients enhanced dynamic aggregation federal deep network for fault diagnosis under multiple conditions[J]. Journal of Electronic Measurement and Instrument, 2023, 37(5): 68-78
Authors:Zhang Yan  He Shubei  Han Yan  Huang Qingqing
Affiliation:1. Key Laboratory of Industrial Internet of Things & Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications,2. Institute of Industrial Internet, Chongqing University of Posts and Telecommunications
Abstract:To address the low accuracy of deep learning based fault diagnosis under distributed scenarios that caused by limited sample ofsingle node and unbalanced distribution of working conditions of multiple nodes, et al, a multi-wavelet coefficients enhanced dynamicaggregation federal deep network ( MWCE-FedDWA) is proposed for fault diagnosis under multiple conditions with distributed smallsamples. A framework for fault diagnosis using MWCE-FedDWA is proposed, wavelet coefficient features are extracted by each terminalnode from its local samples, a method based on multi-wavelet coefficient fusion in deep network is proposed for feature enhancement,each local model utilizes a set of diversified wavelet coefficients to extract more discriminative fault features. A global federal deepnetwork model is constructed in aggregation node by aggregating the local models from multiple terminal nodes, and then adopted for faultdiagnosis under multiple conditions. To reduce the influence of non-independent and identically distributed data among multiple nodes, afederated dynamic weighted aggregation algorithm is proposed to balance the contribution of local models. The results on bearing vibrationdata show that the proposed method can achieve high-precision diagnosis under multiple conditions with distributed small samples.
Keywords:fault diagnosis   small sample   multiple conditions   federated learning   feature enhancement
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号