首页 | 本学科首页   官方微博 | 高级检索  
     

基于ReliefF和HPO-SVM的变压器故障检测方法*
作者姓名:张晓虎  宁环宇
作者单位:湖南工业大学电气与信息工程学院
摘    要:为提高油浸式电力变压器故障诊断的判断正确率,提出了一种利用ReliefF特征权重法、HPO-SVM模型和油中溶解气体分析法(DGA)相结合的故障诊断方法。首先,该方法引入特征权重算法对输入量进行筛选降维;其次,采用猎食者优化算法对概率神经网络模型进行了优化,利用SVM模型处理DGA比值集合,最终得到变压器的故障诊断结果。实验结果表明,采用ReliefF特征权重算法进行降维的模型拥有更高的诊断精确度。实验结果证明HPO-SVM、GWO-SVM、WOA-SVM、PSO-SVM的平均故障判断准确率分别为94%、91.33%、90%、83.33%。仿真结果表明,优选后的混合特征模型诊断正确率更高,证实了此方案的优越性。

关 键 词:变压器故障诊断;油中溶解气体分析;特征权重;猎食者优化支持向量机
点击此处可从《电工技术》浏览原始摘要信息
点击此处可从《电工技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号