首页 | 本学科首页   官方微博 | 高级检索  
     


Surface Defect Engineering in 2D Nanomaterials for Photocatalysis
Authors:Jun Xiong  Jun Di  Jiexiang Xia  Wenshuai Zhu  Huaming Li
Affiliation:1. School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, P. R. China;2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore;3. School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
Abstract:2D Nanomaterials, with unique structural and electronic features, have shown enormous potential toward photocatalysis fields. However, the photocatalytic behavior of pristine 2D photocatalysts are still unsatisfactory, and far below the requirements of practical applications. In this regard, surface defect engineering can serve as an effective means to tune photoelectric parameters of 2D photocatalysts through tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, recent progress in the design of surface defects with the classified anion vacancy, cation vacancy, vacancy associates, pits, distortions, and disorder on 2D photocatalysts to boost the photocatalytic performance is summarized. The strategies for controlling defects formation and technique to distinguish various surface defects are presented. The crucial roles of surface defects for photocatalysis performance optimization are proposed and advancement of defective 2D photocatalysts toward versatile applications such as water oxidation, hydrogen production, CO2 reduction, nitrogen fixation, organic synthesis, and pollutants removal are discussed. Surface defect modulated 2D photocatalysts thus represent a powerful configuration for further development toward photocatalysis.
Keywords:2D nanomaterials  electronic structures  photocatalysts  surface defects  vacancies
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号