首页 | 本学科首页   官方微博 | 高级检索  
     


Synchronous Tailoring Surface Structure and Chemical Composition of Li‐Rich–Layered Oxide for High‐Energy Lithium‐Ion Batteries
Authors:Bing Wu  Xiukang Yang  Xia Jiang  Yi Zhang  Hongbo Shu  Ping Gao  Li Liu  Xianyou Wang
Affiliation:Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory for Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Hunan, Xiangtan, China
Abstract:Li‐rich–layered oxide is considered to be one of the most promising cathode materials for high‐energy lithium ion batteries. However, it suffers from poor rate capability, capacity loss, and voltage decay upon cycling that limits its utilization in practical applications. Surface properties of Li‐rich–layered oxide play a critical role in the function of batteries. Herein, a novel and successful strategy for synchronous tailoring surface structure and chemical composition of Li‐rich–layered oxide is proposed. Poor nickel content on the surface of carbonate precursor is initially prepared by a facile treatment of NH3·H2O, which can retain at a certain low amount on the surface in the final lithiated Li‐rich–layered oxide after a solid‐phase reaction process. Moreover, a phase‐gradient outer layer with “layered‐coexisting phase‐spinel” structure toward to the outside surface is self‐induced and formed synchronously based on poor nickel surface of the precursor. Electrochemical tests reveal this unique surface enables excellent cycling stability, improved rate capability, and slight voltage decay of cathodes. The finding here sheds light on a universal principle both for masterly tailoring surface structure and chemical composition at the same time for improving electrochemical performance of electrode materials.
Keywords:electrochemical performance  Li‐rich–  layered oxide cathode materials  lithium‐ion batteries  phase‐gradient outer layers  poor nickel surfaces
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号