首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of pressure on the swelling of density separated coal particles
Authors:Vladimir Strezov  John A. Lucas
Affiliation:a Graduate School of the Environment, Cooperative Research Centre for Coal in Sustainable Development, Macquarie University, Sydney NSW 2109, Australia
b Cooperative Research Centre for Coal in Sustainable Development and Department of Chemical Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
Abstract:Most of the advanced coal combustion and gasification processes operate under pressurised conditions. Current knowledge of the in situ effect of pressure on coal devolatilisation and swelling, however, is limited, but is essentially required for optimisation of these technologies and to ensure future developments. During heating, fluidity is induced by breaking the coal covalent bonds and forming a plastic state where nucleation occurs, volatiles evolve as bubbles and they flow, diffuse, coalesce and rupture in a complex combination of events that lead to the transient structural evolution of the heated coal particle. The effect of pressure on swelling of individual coal particles is the subject of this work. Density fractions of particles were prepared using a sink-float technique to achieve homogeneous particle properties. Groups of particles from each density fraction were heated in a pressurised single particle reactor at pressures ranging from 0.1 to 5 MPa. The thermal behaviour of each sample was recorded using a long distance microscope attached to a CCD camera. Pressure was found to have parallel and competitive effects on the particle fluidity and transient swelling, resulting in a maximum for both transient and ultimate particle swelling at pressures of 1 MPa. For pressures of over 2 MPa, the observed particle swelling was lower than at higher pressures. In most cases, post-swelling particle contraction was observed with the largest contractions occurring under atmospheric pressure conditions as a result of the major bubble rupture and consequent mass loss. The contraction showed a minimum at 2 MPa and a slight increase at the pressure of 5 MPa thought to be due to an increase of the time the particle remained fluid, enabling the high pressure to further deform the particle. Particles from the lower density group showed larger transient swelling and particle oscillations, while the transient swelling decreased rapidly with increases in the particle density.
Keywords:Coal pyrolysis   Devolatilisation   Swelling   Plastic stage   Long distance microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号