首页 | 本学科首页   官方微博 | 高级检索  
     

空间高效的数据包公平抽样算法
引用本文:张进,邬江兴,钮晓娜. 空间高效的数据包公平抽样算法[J]. 软件学报, 2010, 21(10): 2642-2655. DOI: 10.3724/SP.J.1001.2010.03667
作者姓名:张进  邬江兴  钮晓娜
作者单位:1. 解放军理工大学,通信工程学院,江苏,南京,210016
2. 国家数字交换系统工程技术研究中心,河南,郑州,450002
基金项目:Supported by the National High-Tech Research and Development Plan of China under Grant No.2008AA01A323 (国家高技术研究发展计划(863))
摘    要:数据包公平抽样通过牺牲长流的包抽样率以换取更高的短流包抽样率,因而比均匀随机包抽样更能保证数据流之间的公平性.现有的公平抽样算法SGS(sketch guided sampling)存在空间效率低、短流估计误差大的问题.提出了一种空间高效的数据包公平抽样算法SEFS(space-efficient fair sampling).SEFS算法的新颖之处在于采用多解析度抽样统计器对数据流流量作近似估计,各个统计器由d-left哈希表实现.采用在OC-48和OC-192骨干网采集的真实流量数据,在数据流流量测量以及长流检测的应用背景下,对SEFS算法和SGS算法的性能进行了比较.实验结果表明,与SGS算法相比,SEFS算法在空间复杂度降低65%的前提下,仍具有更高的估计精度.特别是对于占网络数据流绝大多数的短流而言,SEFS算法估计精度高的优势更为明显.

关 键 词:网络流量监测  数据包抽样  d-left哈希
收稿时间:2008-06-18
修稿时间:2009-06-01

Space-Efficient Fair Packet Sampling Algorithm
ZHANG Jin,WU Jiang-Xing and NIU Xiao-Na. Space-Efficient Fair Packet Sampling Algorithm[J]. Journal of Software, 2010, 21(10): 2642-2655. DOI: 10.3724/SP.J.1001.2010.03667
Authors:ZHANG Jin  WU Jiang-Xing  NIU Xiao-Na
Abstract:Fair packet sampling can obtain a higher packet sampling ratio of short flows by sacrificing the packet sampling of long ones; thus, ensuring better fairness among all flows than uniform random sampling does. However, the previously proposed fair sampling algorithm of Sketch Guided Sampling (SGS) has the drawbacks of poor space efficiency and large estimation error for short flows. In this paper, a space-efficient fair packet sampling (SEFS) algorithm is proposed. The key innovation of SEFS is a multi-resolution d-left hashing schema for flow traffic estimation. The performance of SEFS is compared to that of SGS in contexts of both flow traffic measurements and a long flow identification process that uses real-world traffic traces collected from OC-48 and OC-192 backbone network. The experimental results show that the proposed SEFS is more accurate than SGS in both application contexts, while a reduction of 65 percent in space complexity can be achieved. The improvement of estimation accuracy of SEFS is remarkable, especially for short flows, which comprise as past of a large percentage of whole network traffic flows.
Keywords:network traffic monitoring   packet sampling   d-left hashing
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号