首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群算法的电流互感器J-A模型参数辨识
引用本文:曹祎,王路,雷民,陈海宾,陈习文,俞磊,曾健友. 基于改进粒子群算法的电流互感器J-A模型参数辨识[J]. 电测与仪表, 2021, 58(5): 70-77. DOI: 10.19753/j.issn1001-1390.2021.05.010
作者姓名:曹祎  王路  雷民  陈海宾  陈习文  俞磊  曾健友
作者单位:国网上海市电力公司电力科学研究院,上海200052;国家电网华东分部,上海200120;中国电力科学研究院有限公司,武汉430074;中国地质大学艺术与传媒学院,武汉430074
基金项目:国家电网有限公司总部科技项目(5600-202055169A-0-0-00)。
摘    要:在应用Jiles-Atherton(J-A)磁滞模型对电流互感器的磁滞回线进行分析时,需对J-A磁滞模型中5个关键参数进行精确识辨.针对目前辨识方法存在的计算时间长和寻优能力差等问题,提出了一种改进的粒子群算法对J-A磁滞模型中的关键参数进行辨识.该算法将遗传选择策略引入到粒子群算法中,通过增加粒子群的多样性来提高了算...

关 键 词:Jiles-Atherton磁滞模型  改进粒子群算法  参数辨识  磁滞回线
收稿时间:2021-01-05
修稿时间:2021-03-26

The Identification Method of J-A Hysteresis Model ParameterBased on Improved Algorithm(gss-pso)
caoyi,WangLu,leimin,chenhaibin,chenxiwen,yulei and. The Identification Method of J-A Hysteresis Model ParameterBased on Improved Algorithm(gss-pso)[J]. Electrical Measurement & Instrumentation, 2021, 58(5): 70-77. DOI: 10.19753/j.issn1001-1390.2021.05.010
Authors:caoyi  WangLu  leimin  chenhaibin  chenxiwen  yulei and
Affiliation:(State Grid Shanghai Electric Power Research Institute,Shanghai 200052,China;China Electric Power Research Institute Co.,Ltd.,Wuhan 430074,China;State Grid East China Branch,Shanghai 200120,China;School of Art and Communication,China University of Geosciences,Wuhan 430074,China)
Abstract:It is necessary to accurately identify the five key parameters in the Jiles-Atherton(J-A)hysteresis model when it is applied to analyze the hysteresis loop of current transformer.An improved particle swarm optimization algorithm(PSO)is proposed to identify the key parameters in the J-A hysteresis model to solve the problems of computation time-consuming and poor optimization ability existing in the current identification methods.The genetic selection strategy is introduced into the PSO algorithm to improve the global search ability of the algorithm by increasing the diversity of the PSO,so as to improve the accuracy of key parameter identification of the J-A hysteresis model.In this paper,the identification speed and accuracy of the proposed improved algorithm(GSS-PSO)are compared with other intelligent algorithms in identifying the key parameters of J-A hysteresis model.The results show that the error between the hysteresis loops obtained by the improved algorithm and the measured hysteresis loops is the minimum,and the identification efficiency is high,which proves the accuracy and effectiveness of the proposed improved algorithm in the parameter identification of J-A hysteresis model.
Keywords:Jiles-Atherton hysteresis model  improved particle swarm optimization algorithm  parameter identification  hysteresis loop
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号