首页 | 本学科首页   官方微博 | 高级检索  
     

基于分布式光伏发电量预测分析的运行优化策略研究
引用本文:尹国龙. 基于分布式光伏发电量预测分析的运行优化策略研究[J]. 电测与仪表, 2021, 58(10): 118-124. DOI: 10.19753/j.issn1001-1390.2021.10.018
作者姓名:尹国龙
作者单位:国网宁夏电力有限公司,银川750000
摘    要:针对目前分布式光伏发电系统发电量的影响因素较多,不易预测,与其他发电系统之间运行优化策略不完善等问题.文章参考国内外光伏行业大数据应用的典型经验,基于光伏发电数据和用户的负荷需求数据,提出了一种基于RBF神经网络的光伏发电量预测和负荷预测模型,通过对数据的归一化处理和对天气因素的量化和相似度处理,对未来一段时间内的光伏...

关 键 词:分布式光伏  RBF神经网络  发电量预测  运行优化
收稿时间:2019-08-20
修稿时间:2019-08-27

Research on Operation Optimization Strategy Based onPredictive Analysis of Distributed Photovoltaic Generation
Yin Guolong. Research on Operation Optimization Strategy Based onPredictive Analysis of Distributed Photovoltaic Generation[J]. Electrical Measurement & Instrumentation, 2021, 58(10): 118-124. DOI: 10.19753/j.issn1001-1390.2021.10.018
Authors:Yin Guolong
Affiliation:State Grid Ningxia Electric Power Co.,Ltd.
Abstract:In view of the current factors affecting the power generation of distributed photovoltaic power generation systems, it is difficult to predict, and the operation optimization strategy between the other power generation systems is not perfect. Based on the typical experience of big data applications in photovoltaic industry at home and abroad, based on photovoltaic power generation data and user load demand data, this paper proposes an RBF neural network based photovoltaic power generation forecasting algorithm and load forecasting model, which is normalized by data. Processing and quantification and similarity processing of weather factors, forecasting PV power consumption and load in a certain period of time; and using the actual data of a PV power plant in Qingdao to learn and predict, and achieve better results, thus verifying the feasibility of the model. In addition, through the prediction of load and the prediction of power generation, the operation optimization strategy is formulated with the goal of economic performance optimization, which realizes the effective utilization of photovoltaic power generation, balances power between power generation side and load side, and greatly reduces network loss and line. Loss increases the reliability and economy of distributed photovoltaic power.
Keywords:Distributed  photovoltaic, RBF  neural network, power  generation forecast, operation  optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号