首页 | 本学科首页   官方微博 | 高级检索  
     

爆破参数的BP神经网络优选及验证
引用本文:王永奇,戴兵. 爆破参数的BP神经网络优选及验证[J]. 矿业工程研究, 2012, 27(1): 1-3
作者姓名:王永奇  戴兵
作者单位:1. 贵州开磷集团矿业总公司,贵州贵阳,550030
2. 中南大学资源与安全工程学院,湖南长沙,410083
基金项目:国家科技支撑计划课题资助项目
摘    要:爆破矿石块度大小及其均匀程度是反映爆破效果好坏的关键指标,它不仅直接影响采矿作业后续工序如装载、运输等设备工作效率和磨损程度,还严重影响采矿成本.因此利用BP神经网络对开阳磷矿的凿岩爆破参数进行优选,以排距、孔底距及炸药单耗作为输出结果,以国内同类矿山作为训练样本进行练习,计算得到了最优爆破参数,并根据最优爆破参数进行了现场试验验证,结果显示大块率有了明显的降低,因此这种方法由于良好的发展前景.

关 键 词:BP神经网络  爆破参数  影响因素  预测

Optimization and validation of blasting parameters based on BP neural network
WANG Yongqi,DAI Bing. Optimization and validation of blasting parameters based on BP neural network[J]. Mineral Engineeering Reseach, 2012, 27(1): 1-3
Authors:WANG Yongqi  DAI Bing
Affiliation:1.Guizhou Kaiyang Phosphorite Group Company,Guizhou 550030,China;2.School of Resources and Safety Engineering,Central South University,Changsha 410083,China)
Abstract:Size of blasting ore and its uniform degree is a key indicator for whether the blasting effect is good or bad.It not only directly influences subsequent working procedure of the mining operations,such as the equipment work efficiency of loading as well as transportation and wear degree.Furthermore,it seriously affects the mining cost,so the blasting parameters are optimized in Kaiyang Phosphorite Group Company with BP neural network.It takes row spacing,hole bottom distance and explosive unit consumption as the output results.It also takes the domestic similar mines as the training samples for training.The optimal blasting parameters are calculated,and the optimal blasting parameters are tested in site.The results show that the optimal parameters have a good blasting effect.This method has a wide application.
Keywords:BP neural network  blasting parameters  influence factors  validation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号