首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的电化学加工表面粗糙度预测与加工参数正交优化
作者姓名:庞桂兵  李殿明  张利萍  赵秀君  彭彦平
作者单位:大连工业大学
基金项目:国家自然科学基金资助项目(50905020);辽宁省高等学校杰出青年学者成长计划资助项目(LJQ2011051);清华大学摩擦学国家重点实验室开放基金资助项目(SKLTKF11B08)
摘    要:电化学加工的表面粗糙度与加工电流、加工间隙、电解液温度、加工时间、电解液配比等工艺参数密切相关,而这些工艺参数与工件表面粗糙度之间为复杂的非线性关系,建立其关联一直是电化学加工中的难题。以BP神经网络为基本工具,建立了加工参数与表面粗糙度之间关系的数学模型,利用实验数据训练网络,结果表明可实现较小的预测误差;应用正交法分析实验数据,实现了可使表面粗糙度参数变化幅度较大的加工参数的优化配置。

关 键 词:电化学加工  表面粗糙度  神经网络  预测
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号