首页 | 本学科首页   官方微博 | 高级检索  
     

混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型
引用本文:汪程,杨光,祖安君,陈悦,尹文中,邱小秦. 混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型[J]. 长江科学院院报, 2019, 36(8): 67-72. DOI: 10.11988/ckyyb.20181194
作者姓名:汪程  杨光  祖安君  陈悦  尹文中  邱小秦
作者单位:河海大学水文水资源与水利工程科学国家重点实验室,南京210098;河海大学水资源高效利用与工程安全国家工程研究中心,南京210098;河海大学水利水电学院,南京210098;河北农业大学理工学院,河北保定,071066
基金项目:国家自然科学基金重点项目(51739003); 国家重点研发计划课题(2016YFC0401601); 国家重点实验室专项基金(20145027612,20165042112); 广西重点研发计划项目(桂科AB17195074); 中央高校基本科研业务费专项(2015B33614,2017B40214)
摘    要:混凝土坝的总变形可以归结为由水压和温度变化引起的变形以及随时间发展的变形。其中,水压变形和温度变形体现为总变形中的周期性分量,而时效变形体现为总变形中的趋势性分量。借助复合建模思想,提出一种混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型。首先利用小波多分辨分析功能,分解出大坝变形时间序列中的趋势性项、周期性项;其次,运用EGM模型实现对趋势性项的有效预测,采用周期外延模型实现对周期性项的有效预测,在此基础上,利用ARIMA模型实现对EGM模型和周期外延模型残差项的有效预测;最后通过某工程实例,检验所提出模型的有效性。计算结果表明:该组合模型充分考虑大坝各变形分量的变化规律,并基于此,实现对大坝变形时间序列有效的拟合和预测,且其拟合和预测精度均明显优于传统统计模型。

关 键 词:混凝土坝  变形预测  小波分析  EGM(1,1)模型  周期外延法  差分自回归移动平均模型
收稿时间:2018-11-22
修稿时间:2019-02-14

A Combinatorial Wavelet-EGM-PE-ARIMA Model for Predicting Concrete Dam Deformation
WANG Cheng,YANG Guang,ZU An-jun,CHEN Yue,YIN Wen-zhong,QIU Xiao-qin. A Combinatorial Wavelet-EGM-PE-ARIMA Model for Predicting Concrete Dam Deformation[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 67-72. DOI: 10.11988/ckyyb.20181194
Authors:WANG Cheng  YANG Guang  ZU An-jun  CHEN Yue  YIN Wen-zhong  QIU Xiao-qin
Affiliation:1.State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;2.National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098,China;3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;4.College of Science &Technology, Agricultural University of Hebei, Baodin 071066, China
Abstract:The total deformation of concrete dam can be attributed to the deformation caused by water pressure, temperature and time, among which the deformations caused by water pressure and temperature are reflected as periodic components, while the aging deformation as trend component. In this paper, a combinatorial deformation prediction model for concrete dam is established by integrating wavelet decomposition, Even Grey Model (EGM), Periodic Extension (PE), and Autoregressive Integrated Moving Average (ARIMA) model. Wavelet is employed to decompose the trend items and periodic items in the time series of dam deformation; EGM for the effective prediction of trend term, and PE model for periodic term; ARIMA model is adopted for the prediction of residuals of EGM and PE model. An engineering case study verifies the effectiveness of the present model. The results show that the time series of dam deformation can be fitted and predicted effectively by this combined model, in which the variation law of each deformation component of the dam is considered. The fitting accuracy and prediction accuracy of the combined model are both superior to those of traditional statistical model.
Keywords:concrete dam  deformation prediction  wavelet analysis  EGM(1  1)  periodic extension model  ARIMA  
本文献已被 万方数据 等数据库收录!
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号