首页 | 本学科首页   官方微博 | 高级检索  
     


A fully Bayesian approach for combining multilevel failure information in fault tree quantification and optimal follow-on resource allocation
Authors:M. Hamada   H. F. Martz   C. S. Reese   T. Graves   V. Johnson  A. G. Wilson
Affiliation:a Group D-1, MS F600, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;b Department of Statistics, 230 TMCB, Brigham Young University, Provo, UT 84602, USA;c School of Public Health, Building II, 1420 Washington Heights, University of Michigan, Ann Arbor, MI 48105, USA
Abstract:This paper presents a fully Bayesian approach that simultaneously combines non-overlapping (in time) basic event and higher-level event failure data in fault tree quantification. Such higher-level data often correspond to train, subsystem or system failure events. The fully Bayesian approach also automatically propagates the highest-level data to lower levels in the fault tree. A simple example illustrates our approach. The optimal allocation of resources for collecting additional data from a choice of different level events is also presented. The optimization is achieved using a genetic algorithm.
Keywords:Genetic algorithm   Information gain   Markov chain Monte Carlo
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号