Underactuated fingers controlled by robust and adaptive trajectory following methods |
| |
Authors: | J. Jalani G. Herrmann C. Melhuish |
| |
Affiliation: | 1. Department of Mechanical Engineering , University of Bristol, Queen's Building University Walk , Bristol BS8 1TR , UK;2. Bristol Robotics Laboratory (BRL) , University of Bristol and the University of the West of England , T Building Frenchay Campus, Bristol BS16 1QY , UK;3. Department of Electrical Technology , University Tun Hussein Onn Malaysia , 86400 Batu Pahat , Johor, Malaysia jamalj@uthm.edu.my;5. Bristol Robotics Laboratory (BRL) , University of Bristol and the University of the West of England , T Building Frenchay Campus, Bristol BS16 1QY , UK;6. Bristol Robotics Laboratory (BRL) , University of Bristol and the University of the West of England , T Building Frenchay Campus, Bristol BS16 1QY , UK |
| |
Abstract: | Choosing an appropriate control scheme to alleviate nonlinearities and uncertainties is not a trivial task, especially when models are not easily available and practical evaluation provides the only means for actual performance assessment. Various factors can contribute to these nonlinearities and uncertainties, such as friction and stiction. Thus, this article investigates four different control schemes, namely PID, adaptive, conventional sliding mode control (SMC) and integral sliding mode control (ISMC) which are implemented in the Bristol Elumotion Robot Hand (BERUL) to analyse and overcome the aforementioned problems. The hand has five fingers with 16 joints and all fingers are underactuated. The implementation of the proposed control schemes are challenging since the BERUL fingers have significant friction, stiction and unknown parameters. The fingers are light in weight and fragile. Comparative performance characteristics have shown that the ISMC is the most suitable candidate to provide good experimental trajectory following and positioning control for underactuated BERUL fingers. |
| |
Keywords: | trajectory following integral sliding mode control sliding mode control PID control adaptive control underactuated robotic fingers |
|
|