首页 | 本学科首页   官方微博 | 高级检索  
     

一种粒子群优化原型模式修正力度的协同分类方法
引用本文:邹刚,姚伟,敖永红,孙即祥,陈森林. 一种粒子群优化原型模式修正力度的协同分类方法[J]. 信号处理, 2010, 26(4)
作者姓名:邹刚  姚伟  敖永红  孙即祥  陈森林
作者单位:1. 国防科技大学电子工程学院,长沙,410073;国防科技大学信息中心,长沙,410073
2. 国防科技大学电子工程学院,长沙,410073
3. 国防科技大学信息中心,长沙,410073
4. 湖南省肿瘤医院病理科,长沙,410084
摘    要:协同模式识别是一种有着抗噪声、抗缺损、强鲁棒性等诸多优良特性的模式识别方法,其中原型模式的选取模式识别结果有着决定性的作用,其选取直接决定着模式识别的结果和效果,各种方法中信息反馈修正的方法能获得较的效果,但易出现信息饱和的问题;提出了一种粒子群优化修正力度的处理机制,能有效改善此问题,获得最优原型;改进的算法应用于纹理和鼻咽癌细胞图像识别,结果表明,该方法能有效地提高协同神经网络的识别率和可靠性,且识速度也有提高.

关 键 词:协同神经网络  原型模式重构  粒子群优化

A Synergetic classification algorithm based on prototype modify with particle swarm optimization measure
ZOU Gang,YAO Wei,AO Yong-hong,SUN Ji-xiang,CHEN Sen-lin. A Synergetic classification algorithm based on prototype modify with particle swarm optimization measure[J]. Signal Processing(China), 2010, 26(4)
Authors:ZOU Gang  YAO Wei  AO Yong-hong  SUN Ji-xiang  CHEN Sen-lin
Abstract:The synergetic pattern recognition is a new way of pattern recognition with many excellent features such as noise resistance, deformity resistance, and better robustness,the selection of prototype patterns is very important to pattern recognition of synergetic approach, which set the tone for the recognition performance of synergetic approach, the superposition modify of information is better in the existing methods of prototype selection, prototype modify method with particle swarm optimization measure is applied to avoided information saturation,and get the optimal prototype, experiment result on Brodatz texture images and nasopharyngeal carcinoma cell images shows that the new algorithm can effectively search the optimal prototype patterns,the synergetic recognition method proposed in this paper is more available than classical synergetic pattern recognition method, and excellent, correct and fast recognition result has been achieved, with good potential clinical application.
Keywords:Synergetic Neural Network(SNN)  prototype modify  particle swarm optimization(PSO)
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号