Zur Konvergenz der Ableitungen von Interpolationspolynomen |
| |
Authors: | Dr. R. Haverkamp |
| |
Affiliation: | 1. Institut für Angewandte Mathematik, Universit?t Bonn, Wegelerstrasse 6, D-5300, Bonn 1, Bundesrepublik Deutschland
|
| |
Abstract: | Letp n denote the polynomial of degreen or less that interpolates a given smooth functionf at the ?eby?ev nodest j n =cos(jπ/n), 0≤j≤n, and let ‖·‖ be the maximum norm inC[?1, 1]. It is proved that fork-th derivatives (2≤k≤n) estimates of the following type hold $$parallel f^{(k)} - p_n^{(k)} parallel leqslant c_k n^{k - 1} inf { parallel f^{(k)} - qparallel :q in Pi _{n - k} } .$$ In this relationc k only depends onk andΠ n?k denotes the space of polynomials up to degreen?k. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|