首页 | 本学科首页   官方微博 | 高级检索  
     


New Bismaleimide-Silica Hybrid Materials: A Critical Assessment of Properties in Correlation with the Method of Synthesis
Authors:V Gaina  O Ursache  C Gaina  D Timpu  F Tanasa
Affiliation:1. “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Polyaddition and Photochemistry, Iasi, Romania;2. “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Polymer Physical Chemistry, Iasi, Romania
Abstract:New hybrid materials have been prepared by sol–gel technique. They have been obtained from bismaleimide monomers either in reaction with N-(3-triethoxysilylpropyl)furan-2-carboxamide monomer, by a Diels–Alder reaction, or in reaction with (3-aminopropyl)triethoxysilane following a Michael addition reaction. The sol–gel process was conducted with or without adding different amounts of tetraethyl orthosilicate. The structures of the obtained compounds have been confirmed by proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. A comparative study between Diels–Alder- and Michael addition-type products regarding their thermal and mechanical properties was also conducted for samples as obtained from synthesis. The thermoreversible character of the Diels–Alder hybrid materials has been demonstrated with the aids of differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy, the results from both methods being in good agreement with each other, and with literature data. The morphology of hybrid materials was studied by the atomic force microscopy, optical microscopy for three different stages: initial (24°C), at heating (150°C), and after cooling at 24°C, and scanning electron microscopy. All data confirmed the driving force for the dispersion of the Si-containing aggregates in the Michael addition series is the dynamic evolution of the sol–gel process, whereas the Diels–Alder series behavior is ruled by the thermoreversible character of the Diels–Alder cycloaddition.
Keywords:AFM  Diels–Alder reaction  hybrid materials  Michael addition reaction  thermal properties  thermoreversibility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号