首页 | 本学科首页   官方微博 | 高级检索  
     


Metallic Magnetic Calorimeters for Particle Detection
Authors:C Enss  A Fleischmann  K Horst  J Schönefeld  J Sollner  J S Adams  Y H Huang  Y H Kim and G M Seidel
Affiliation:(1) Kirchhoff-Institut für Physik, Universität Heidelberg, D-69120 Heidelberg, Germany;(2) Physics Department, Brown University, Providence, Rhode Islands 02912, USA
Abstract:The principles and theory of operation of a magnetic calorimeter, made of a dilute concentration of paramagnetic ions in a metallic host, is discussed in relation to the use of such a device as a detector of x-rays. The response of a calorimeter to the absorption of energy depends upon size, heat capacity, temperature, magnetic field, concentration of spins and interactions among them. The conditions that optimize the performance of a calorimeter are derived. Noise sources, especially that due to thermodynamic fluctuations of the electrons in the metal, are analyzed. Measurements have been made on detectors in which Er serves as the paramagnetic ion and Au as the host metal. The measured resolution of a detector with a heat capacity of 10–12 J/K was 12 eV at 6 keV. In a detector suitable for use with hard x-rays up to 200 keV a resolution of 120 eV was obtained. Calculations indicate that the performance of both detectors can be improved by an order of magnitude. At temperatures below 50 mK, the time response of the Au : Er calorimeters to an energy deposition indicates the presence of an additional heat capacity, which we interpret as arising from the quadruple splitting of the Au nuclei in the electric field gradients introduced by the presence of the Er ions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号