首页 | 本学科首页   官方微博 | 高级检索  
     

基于网格搜索优化ERF模型的风电机组异常状态预警
引用本文:马良玉,赵尚羽,孙佳明,於世磊. 基于网格搜索优化ERF模型的风电机组异常状态预警[J]. 热能动力工程, 2022, 37(2): 160-166
作者姓名:马良玉  赵尚羽  孙佳明  於世磊
作者单位:华北电力大学自动化系
摘    要:提出一种基于网格搜索优化(GS)极端随机森林(ERF)模型的风电机组性能预测及异常状态预警方法.首先,采用离散度分析法清洗噪声和异常工况数据,以获取建模用正常运行状态数据.其次,通过分析风机运行与控制原理,选取与转速和功率具有较高相关度的特征参数作为模型输入,完成预测模型训练和验证,并对比ERF模型与其它几种模型的建模...

关 键 词:风电机组  极端随机森林  异常工况预警  滑动窗口  网格搜索

Wind Turbine Abnormal State Early Warning based on ERF Model Optimized with Grid Search
MA Liang-yu,ZHAO Shang-yu,SUN Jia-ming,YU Shi-lei. Wind Turbine Abnormal State Early Warning based on ERF Model Optimized with Grid Search[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(2): 160-166
Authors:MA Liang-yu  ZHAO Shang-yu  SUN Jia-ming  YU Shi-lei
Abstract:A wind turbine performance prediction and abnormal state early warning method is proposed based on the combination of grid search(GS) and extreme random forest(ERF) model. Firstly, the dispersion analysis method is applied to clear the noise and abnormal working condition data, so as to acquire the normal operating data for modeling. Secondly, by analyzing the operating and control principles of the wind turbine, the characteristic parameters with high correlation degree to fan speed and output power are selected as the model inputs, the prediction model is trained and tested with above data, and the modeling effect of ERF model is compared with those of several other models. Finally, it is determined that the window width is 10 min and the increment is 1 min based on the sliding window algorithm, the mean absolute errors of the parameters inside the window are calculated as the state indicators, and the non parametric estimation method is adopted to determine the generator speed threshold of 33.78 and the active power threshold of 55.07.The abnormal state early warning method is verified by using the actual historical operating data and fault samples of a certain wind turbine.The research results show that this method can detecte the impending failure, which warning time is earlier than the actual failure time effectively.
Keywords:wind turbine  extreme random forest  abnormal state warning  sliding window  grid search
点击此处可从《热能动力工程》浏览原始摘要信息
点击此处可从《热能动力工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号