首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-GRU的遥操作机器人操作者识别与自适应速度控制方法
引用本文:阳雨妍,宋爱国,沈书馨,李会军. 基于CNN-GRU的遥操作机器人操作者识别与自适应速度控制方法[J]. 仪器仪表学报, 2021, 0(3): 123-131
作者姓名:阳雨妍  宋爱国  沈书馨  李会军
作者单位:1.东南大学仪器科学与工程学院
基金项目:国家自然科学基金联合基金重点项目(U1713210)、江苏省重点研发计划项目(BE2018004- 4)、人因工程国防科技重点实验室开放基金项目(6142222200314)资助
摘    要:传统空间遥操作系统中从端机械臂的运动速度完全取决于操作者的操作速度.为了提高空间遥操作系统的安全性,提出了一种基于操作者操作速度识别的自适应速度控制方法.结合深度学习的理论,提出了一种基于卷积神经网络(CNN)和门控循环单元(GRU)神经网络的融合模型来对操作者的速度进行识别分类.选取了九位受试者构建操作者速度样本库,...

关 键 词:空间遥操作  卷积神经网络  门控循环单元神经网络  串级PID  速度控制

Operator recognition and adaptive speed control method of teleoperation robot based on CNN-GRU
Yang Yuyan,Song Aiguo,Shen Shuxin,Li Huijun. Operator recognition and adaptive speed control method of teleoperation robot based on CNN-GRU[J]. Chinese Journal of Scientific Instrument, 2021, 0(3): 123-131
Authors:Yang Yuyan  Song Aiguo  Shen Shuxin  Li Huijun
Affiliation:1.School of Instrument Science and Engineering, Southeast University
Abstract:The movement speed of the slave manipulator arm in traditional space teleoperation system completely depends on the operatingspeed of the operator. In order to improve the safety of the space teleoperation system, an adaptive speed control method based on therecognition of the operating speed of the operator is proposed. Combining with the theory of deep learning, a fusion model based onconvolutional neural network (CNN) and gate recurrent unit (GRU) neural network is proposed to identify and classify the speed ofoperator. Nine subjects were selected to construct an operator speed sample library. The operating speed of the operators is divided intothree categories, and the final recognition accuracy rate reaches 92. 71% . And, on this basis, the cascade PID is used to realize theadaptive speed control of the slave manipulator arm. Experiments confirm that the model can also accurately identify new operators. Atthe same time, the accuracy of the model is better than that of the fusion model of convolutional neural network and recurrent neuralnetwork (RNN), and the real-time performance of the model is better than that of the fusion model of convolutional neural network andlong short-term memory (LSTM) neural network. Besides, the adaptive speed control based on this model can reduce the end linearspeed of the manipulator arm while ensuring that the movement trajectory of the slave manipulator arm remains unchanged, which helpsto improve the safety of the space teleoperation system.
Keywords:space teleoperation   convolutional neural network   gate recurrent unit neural network   cascade PID   speed control
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号