首页 | 本学科首页   官方微博 | 高级检索  
     

基于三维热传导模型的风力机叶片缺陷深度检测
引用本文:张雪岩,周 勃,李 鹤.基于三维热传导模型的风力机叶片缺陷深度检测[J].仪器仪表学报,2021(1):174-182.
作者姓名:张雪岩  周 勃  李 鹤
作者单位:沈阳工业大学机械工程学院;沈阳工业大学建筑与土木工程学院;东北大学航空动力装备振动及控制教育部重点实验室
基金项目:国家自然科学基金(51575361);航空动力装备振动及控制教育部重点实验室开放课题(VCAME201905);沈阳市中青年科技创新人才支持计划项目(RC190365)资助。
摘    要:基于等效源法建立了含缺陷叶片三维热传导模型,解决了一维导热模型不能有效预测各向异性材料缺陷周围三维热流的问题,实现了用脉冲红外热像技术对大型风力机叶片缺陷深度进行准确评估。通过线性坐标变换将含缺陷叶片三维导热方程简化为各向同性问题,再用分离变量法求得第三类边界条件下的缺陷区表面过余温度解析解,建立了缺陷几何尺寸、过余温度峰值时刻与缺陷深度之间的定量关系。对1.5 MW风力机玻璃纤维增强复合材料(GFRP)复合材料叶片进行了现场检测,证明了方法的可行性。测试结果表明,量程可达7.8 mm,检测误差低于10%,相较于一维模型方法可使精度提高10%~31.4%。此外,当缺陷深度超过3 mm,边界换热不可被忽略,否则将导致10.0%以上的检测误差。文中方法可为其他各向异性材料的缺陷检测提供参考。

关 键 词:风力机叶片  缺陷深度  红外热像  三维热传导模型  玻璃纤维增强复合材料

Wind turbine blade defect depth detection based on three-dimensional heat conduction model
Zhang Xueyan,Zhou Bo,Li He.Wind turbine blade defect depth detection based on three-dimensional heat conduction model[J].Chinese Journal of Scientific Instrument,2021(1):174-182.
Authors:Zhang Xueyan  Zhou Bo  Li He
Affiliation:(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China;School of Architecture and Civil Engineering,Shenyang University of Technology,Shenyang 110870,China;Key Laboratory of Vibration and Control of Aero-Propulsion System,Ministry of Education,Northeastern University,Shenyang 110004,China)
Abstract:A three-dimensional heat conduction model of wind turbine blade with defect is established based on equivalent source theory, which solves the problem that one-dimensional heat conduction model cannot effectively predict the three-dimensional heat flow around the anisotropic material defect, and the accurate evaluation of the defect depth of the large-scale wind turbine blade is realized with pulsed infrared thermal imaging technology. The three-dimensional heat conduction equation of the blade with defect is simplified to isotropic problem with linear coordinate transformation, and then the analytical solution of the surface excess temperature in the defect area under the third boundary condition is obtained using separating variable method. Finally, the quantitative relationship among geometry dimensions of the defect, the peak time of excess temperature and the depth of defect is established. The on-site detection of 1.5 MW wind turbine blade made of GFRP composite material was carried out, which proves the feasibility of the proposed method, and the detection results show that the detection range reaches 7.8 mm, the detection error is less than 10%, and the detection accuracy is improved by 10%~31.4% compared with the one-dimensional model method. In addition, when the defect depth exceeds 3 mm, the boundary heat transfer cannot be ignored, otherwise more than 10.0% detection error will be caused. The method proposed in this paper can provide a reference for the defect detection of other anisotropic materials.
Keywords:wind turbine blade  defect depth  infrared thermography  three dimensional heat conduction model  glass fiber reinforced plastic
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号