首页 | 本学科首页   官方微博 | 高级检索  
     


Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy
Authors:Lúcio Costa Proença  Enedir Ghisi
Affiliation:1. Laboratory of Energy Efficiency in Buildings, Department of Civil Engineering, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
Abstract:The objective of this article is to assess the potential for potable water savings in office buildings located in Florianópolis, southern Brazil. The embodied energy of four alternatives to reduce potable water demand, i.e., rainwater harvesting, greywater reuse, dual-flush toilets and water-saving taps, was also assessed. The analyses took into account the potable water end-uses for ten buildings. The potential for potable water savings by using rainwater, as well as, the rainwater tank sizing were estimated using computer simulation. As for greywater reuse, it was considered that greywater from lavatory taps could be treated and reused to flush toilets. The potential for potable water savings by using water-saving plumbing fixtures was estimated by considering the replacement of toilets and taps. In order to estimate the embodied energy in the main components, each system was dimensioned and embodied energy indices were applied. The main result is that the potential for potable water savings by using dual-flush toilets ranges from 21.6 % to 57.4 %; by reusing greywater, it ranges from 6.8 % to 38.4 %; by using rainwater, it ranges from 6.1 % to 21.2 %; by using water-saving taps it ranges from 2.7 % to 15.4 %. However, by considering the embodied energy, the average for the ten buildings indicates that dual-flush toilets are the best choice as it is possible to obtain water savings of 5.50 m3/month per GJ of embodied energy, followed, respectively, by water-saving taps, greywater reuse and rainwater usage. The main conclusion is that the assessment of embodied energy should be considered when evaluating potable water savings in buildings as it helps to identify the best alternatives to save more water while causing less environmental impact.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号