aFuture Fusion Technology Laboratory, Korea Institute of Science and Technology, Seoul 130-650, South Korea
bSchool of Mechanical Engineering, Kyungpook National University, Daegu 702-701, South Korea
Abstract:
Humidity dependency of friction behavior of nano-undulated diamond-like carbon (DLC) films was investigated by a home-made ball-on-disk type tribometer under controlled relative humidity of 0, 50, and 90%. Nano-undulated DLC films with surface roughness ranging from 0.2 to 13.4 nm were prepared by deposition of DLC film on the Si substrate with Ni nanodots. Friction coefficient of the flat DLC surface increased with the relative humidity, while that of the nano-undulated surfaces revealed smaller dependence on the relative humidity. When the surface roughness increased to 13.4 nm, friction behavior was observed to be independent of the relative humidity. The analysis of chemical composition and atomic bond structure of the debris and the transfer layer revealed that the humidity dependence on the nano-undulated surface was minimized by suppressing the graphitization of the transfer layer even with high concentration of Fe in the debris.