首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进自适应遗传算法的机器人路径规划研究
作者姓名:田欣  刘广瑞  周文博  郭珂甫
作者单位:郑州大学机械工程学院,河南郑州,450001
摘    要:传统遗传算法的交叉和变异操作为随机操作,虽然简单,但在路径规划中却会产生不可行路径,增加运算量,影响算法的收敛速度。针对这一问题,在传统遗传算法遗传操作的基础上进行了改进,利用先验知识保证遗传操作后的种群个体为可行路径,同时提出了新的遗传参数自适应调整方式与之配合,提高了算法的寻优效率。最后,由于遗传算法容易陷入局部最优,根据模拟退火算法的Metropolis准则对经过遗传操作产生的新个体进行接受判定。通过将改进后的遗传算法与其他文献中的改进遗传算法相比较,结果表明:文中的改进遗传算法在收敛速度、优化效果以及寻优能力上都取得了明显的效果。

关 键 词:遗传算法  遗传操作  自适应调整  Metropolis准则
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号