摘 要: | 传统遗传算法的交叉和变异操作为随机操作,虽然简单,但在路径规划中却会产生不可行路径,增加运算量,影响算法的收敛速度。针对这一问题,在传统遗传算法遗传操作的基础上进行了改进,利用先验知识保证遗传操作后的种群个体为可行路径,同时提出了新的遗传参数自适应调整方式与之配合,提高了算法的寻优效率。最后,由于遗传算法容易陷入局部最优,根据模拟退火算法的Metropolis准则对经过遗传操作产生的新个体进行接受判定。通过将改进后的遗传算法与其他文献中的改进遗传算法相比较,结果表明:文中的改进遗传算法在收敛速度、优化效果以及寻优能力上都取得了明显的效果。
|