首页 | 本学科首页   官方微博 | 高级检索  
     

基于数字图像的刀具磨损状态检测技术
引用本文:何翔,任小洪. 基于数字图像的刀具磨损状态检测技术[J]. 机床与液压, 2016, 44(3): 125-128. DOI: 10.3969/j.issn.1001-3881.2016.03.031
作者姓名:何翔  任小洪
作者单位:四川理工学院自动化与电子信息学院,四川自贡,643000
基金项目:人工智能四川省重点实验室资助项目(2012RZY22),机械装备智能信息工程学科校级交叉学科建设项目(2014JC02),四川理工学院2014年研究生创新基金项目(y2014006)
摘    要:采用数字图像分割和亚像素边缘检测等图像处理技术自动测量刀具磨损边界的磨损量并与刀具磨钝标准比较,判断刀具的磨损状态,实现刀具磨损状态的间歇式在线自动检测。针对刀具的边缘特征,运用了中值滤波、对比度拉伸、迭代自适应二值化、基于分水岭分割、Roberts边缘算子、图像匹配、Zernike正交矩边缘检测和曲线拟合等数字图像处理技术,完成了刀具磨损量微米级的高精度检测。

关 键 词:刀具磨损  数字图像处理  Zernike正交矩  磨损状态

Tool Wear State Detection Technology Based on Digital Image
Abstract:Images processing technologies were used of digital image segmentation and sub pixel edge detection. The boundaries of tool wear were measured automatically, and the amount of wear and blunt standard was compared to judge the wear condition of tool, achieving tool wear for intermittent automatic measurement on line. Aimed at edge features of the tools, the digital images processing technologies were used like median filter, contrast stretching, iterative adaptive binarization, based watershed segmentation, Roberts edge operator, image matching, zernike orthogonal moments and curve fitting, and etc. The detection of tool wear condition is completed with micron level high precision.
Keywords:Tool wear  Digital image processing  Zernike orthogonal moments  Wear state
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号