首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络和D-S证据理论的刀具磨损监测方法
引用本文:聂鹏,吴文进,李正强,张大国. 基于BP神经网络和D-S证据理论的刀具磨损监测方法[J]. 机床与液压, 2016, 44(9): 173-177. DOI: 10.3969/j.issn.1001-3881.2016.09.041
作者姓名:聂鹏  吴文进  李正强  张大国
作者单位:沈阳航空航天大学机电工程学院,辽宁沈阳,110136
基金项目:辽宁省重点实验室项目(LS2010117)
摘    要:将BP神经网络和D-S证据理论相结合的方法运用于刀具磨损监测中,采用小波包分解法对刀具磨损过程中产生的声发射信号进行特征提取,构建特征向量,利用BP神经网络识别判断刀具磨损状态;通过BP神经网络的输出结果和训练误差计算D-S证据理论的基本概率赋值,并用D-S证据理论对BP神经网络的识别结果进行决策级融合。实验结果表明:该方法避免了神经网络识别时的误诊,提高了整个刀具磨损监测系统识别的准确性和可靠性。

关 键 词:刀具磨损  小波包分解  神经网络  D-S证据理论

Tool Wear Monitoring Method Based on BP Neural Network and D S Evidence Theory
Abstract:The method of BP neural network and D-S evidence theory combination was used in tool wear monitoring. The wavelet packet decomposition method was used to extract the acoustic emission signals from the tool wear process, feature vectors was construc-ted and tool wear state was determined using BP neural network. Basic probability assignment of D-S evidence theory was calculated through the output of BP neural network and training error, and level fusion was decided using recognition results of D-S evidence theo-ry to BP neural network. Experimental results show that this method avoids misdiagnosis of neural network and improves recognition ac-curacy and reliability of the tool wear monitoring system.
Keywords:Tool wear  Wavelet packet decomposition  Neural network  D-S evidence theory
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号