首页 | 本学科首页   官方微博 | 高级检索  
     


hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation
Authors:Igor Mozolevski  Endre Süli  Paulo R. Bösing
Affiliation:1.Mathematics Department,Federal University of Santa Catarina,Trindade,Brazil;2.Computing Laboratory,University of Oxford,Oxford,UK;3.Applied Mathematics Department, IME,University of S?o Paulo,S?o Paulo,Brazil
Abstract:We consider the symmetric formulation of the interior penalty discontinuous Galerkin finite element method for the numerical solution of the biharmonic equation with Dirichlet boundary conditions in a bounded polyhedral domain in $$mathbb{R}^d, d geqslant 2$$. For a shape-regular family of meshes consisting of parallelepipeds, we derive hp-version a priori bounds on the global error measured in the L2 norm and in broken Sobolev norms. Using these, we obtain hp-version bounds on the error in linear functionals of the solution. The bounds are optimal with respect to the mesh size h and suboptimal with respect to the degree of the piecewise polynomial approximation p. The theoretical results are confirmed by numerical experiments, and some practical applications in Poisson–Kirchhoff thin plate theory are presented.
Keywords:High-order elliptic equations  finite element methods  discontinuous Galerkin methods   a priori error analysis  linear functionals
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号