首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合神经网络的风机性能监测模型
引用本文:安连锁,胡海燕,王松岭,侯军虎. 基于混合神经网络的风机性能监测模型[J]. 华北电力大学学报(自然科学版), 2003, 30(2): 61-63
作者姓名:安连锁  胡海燕  王松岭  侯军虎
作者单位:华北电力大学,动力工程系,河北,保定,071003
摘    要:针对传统的RBF神经网络泛化能力差的缺点,利用RBF神经网络强大的非线性逼近能力和数学模型良好的外推能力,提出了一种将传统的RBF神经网络和用偏最小二乘法建立的通风机性能数学模型相结合的混合神经网络模型,并将该模型用于通风机的重要性能参数——流量的监测上。以实验室4-73No.8D离心风机为研究对象,用不同导流器开度下的实验数据进行拟合,研究结果表明,混合神经网络模型的泛化能力强,精度高,各项模型评价参数均优于传统的RBF神经网络模型。

关 键 词:离心风机  RBF神经网络  数学模型  混合模型  性能监测  曲线拟合
文章编号:1007-2691(2003)02-0061-03
修稿时间:2002-09-13

Monitoring model of fan performance based on hybrid neural network
AN Lian-suo,HU Hai-yan,WANG Song-ling,HOUJun-hu. Monitoring model of fan performance based on hybrid neural network[J]. Journal of North China Electric Power University, 2003, 30(2): 61-63
Authors:AN Lian-suo  HU Hai-yan  WANG Song-ling  HOUJun-hu
Abstract:Due to the limitation of RBF neural network's generalization ability, an improved fan performance model in the flux monitoring is proposed based on hybrid neural network. It makes use of the strong nonlinear approaching of RBF neural network and partial least squares (PLS) model. Performance curves of 4-73No. 8D were approached with experimental data of different opening angles of guider. The results show that the hybrid neural network model has better generalization ability and higher precision, and it is superior to normal RBF neural network model.
Keywords:centrifugal fan  RBF neural network  mathematic model  hybrid neural network model  performance monitoring  curve fitting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号