首页 | 本学科首页   官方微博 | 高级检索  
     


CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined High Power Impulse Magnetron Sputtering/Unbalanced Magnetron Sputtering (HIPIMS/UBM) technology
Authors:P.Eh. Hovsepian  U. Ratayski
Affiliation:a Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, United Kingdom
b Technical University of Mining and Technology, Faculty for Materials Science and Materials Technology, Freiberg, Germany
Abstract:CrAlYCN/CrCN coating combining high hardness (Hp = 36 GPa) and low friction coefficient (µ = 0.42 against Al2O3) has been developed for machining of Si containing Al-alloys. The coating was deposited by the combined High Power Impulse Magnetron Sputtering/Unbalanced Magnetron sputtering, (HIPIMS/UBM) technology. Macroparticle free Cr+ ion flux was generated by HIPIMS discharge to sputter clean the substrates prior to the coating deposition. The use of HIPIMS for surface pre treatment resulted in excellent adhesion, scratch test adhesion critical load value of Lc = 55 N on HSS and Lc = 68 N due to the local epitaxial growth and extremely smooth coating surface, Ra = 0.012 μm due to the elimination of growth defects.The coating crystallised in fcc structure with a preferred {220} orientation. XTEM analysis revealed a nanoscale multilayer structure of the coating with carbon segregated at the column boundaries but also vertically to form a lateral phase at the interfaces between the individual nanolayers.Addition of C to CrAlYN/CrN increased the chemical inertness between cutting tool and workpiece material without deteriorating the oxidation resistance of the coating. Thermo gravimetric analysis showed that the temperature for the onset of rapid oxidation was as high as 940 °C.In dry milling of AlSi9Cu1 alloy, CrAlYCN/CrCN coated 8 mm diameter cemented carbide end mills outperformed non coated end mills by factor of 2.5 with effective hindered built up edge formation mechanism.
Keywords:81.40.Pq Friction, lubrication, and wear   81.05.Zx New materials: theory, design, and fabrication   81.15.Cd Deposition by sputtering   81.65.Cf Surface cleaning, etching, patterning   68.35.Np Adhesion   Plasma pretreatment by High Power Impulse Magnetron Sputtering (HIPIMS)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号