首页 | 本学科首页   官方微博 | 高级检索  
     


Networks for sorting multitonic sequences
Authors:Joel
Affiliation:Computer Science Department, University of Rochester, Rochester, NY 14627-0226, USA
Abstract:Lee and Batcher have designed networks that efficiently merge k separately provided sorted sequences of known lengths totalling n. We show that the design is still possible, and in fact easier to describe, if we do not make use of the lengths, or even the directions of monotonicity, of the individual sequences—the sequences can be provided in a single undelimited concatenation of length n. The depth of the simplest resulting network to sort sequences that are “k-tonic” and of length n is , generalizing Batcher's 1968 results for the extreme values of k (k=2 corresponding to merging, and k=n/2 corresponding to general sorting).The exposition is self-contained and can serve even as an introduction to sorting networks and Batcher's results.
Keywords:Bitonic sort   Merge exchange sort   Odd–  even merge   Multiway merge   Merging networks   Sorting networks   Comparison networks   Oblivious merging   Oblivious sorting   Parallel sorting   Nearly sorted data   Long runs   Presortedness   Parallel processing   Analysis of algorithms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号