首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Defects on the Temperature‐Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition
Authors:Milad Yarali  Xufei Wu  Tushar Gupta  Debjit Ghoshal  Lixin Xie  Zhuan Zhu  Hatem Brahmi  Jiming Bao  Shuo Chen  Tengfei Luo  Nikhil Koratkar  Anastassios Mavrokefalos
Affiliation:1. Department of Mechanical Engineering, University of Houston, Houston, TX, USA;2. Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA;3. Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA;4. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA;5. Department of Physics and TcSUH, University of Houston, Houston, TX, USA;6. Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
Abstract:It is understood that defects of the atomic arrangement of the lattice in 2D molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD) can have a profound effect on the electronic and optical properties. Beyond these it is a major prerequisite to also understand the fundamental effect of such defects on phonon transport, to guarantee the successful integration of MoS2 into the solid‐state devices. A comprehensive joint experiment‐theory investigation to explore the effect of lattice defects on the thermal transport of the suspended MoS2 monolayer grown by CVD is presented. The measured room temperature thermal conductivity values are 30 ± 3.3 and 35.5 ± 3 W m?1 K?1 for two samples, which are more than two times smaller than that of their exfoliated counterpart. High‐resolution transmission electron microscopy shows that these CVD‐grown samples are polycrystalline in nature with low angle grain boundaries, which is primarily responsible for their reduced thermal conductivity. Higher degree of polycrystallinity and aging effects also result in smoother temperature dependency of thermal conductivity (κ) at temperatures below 100 K. First‐principles lattice dynamics simulations are carried out to understand the role of defects such as isotopes, vacancies, and grain boundaries on the phonon scattering rates of our CVD‐grown samples.
Keywords:chemical vapor deposition  defect engineering  molybdenum disulfide  thermal conductivity  transition metal dichalcogenides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号