首页 | 本学科首页   官方微博 | 高级检索  
     


Guiding Brain‐Tumor Surgery via Blood–Brain‐Barrier‐Permeable Gold Nanoprobes with Acid‐Triggered MRI/SERRS Signals
Authors:Xihui Gao  Qi Yue  Zining Liu  Mengjing Ke  Xingyu Zhou  Sihan Li  Jianping Zhang  Ren Zhang  Liang Chen  Ying Mao  Cong Li
Affiliation:1. Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China;2. Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China;3. Department of Nuclear Medicine, Shanghai Cancer Center, Fudan University, Shanghai, China;4. Center of Analysis and Measurement, Fudan University, Shanghai, China;5. State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
Abstract:Surgical resection is a mainstay in the treatment of malignant brain tumors. Surgeons, however, face great challenges in distinguishing tumor margins due to their infiltrated nature. Here, a pair of gold nanoprobes that enter a brain tumor by crossing the blood–brain barrier is developed. The acidic tumor environment triggers their assembly with the concomitant activation of both magnetic resonance (MR) and surface‐enhanced resonance Raman spectroscopy (SERRS) signals. While the bulky aggregates continuously trap into the tumor interstitium, the intact nanoprobes in normal brain tissue can be transported back into the blood stream in a timely manner. Experimental results show that physiological acidity triggers nanoparticle assembly by forming 3D spherical nanoclusters with remarkable MR and SERRS signal enhancements. The nanoprobes not only preoperatively define orthotopic glioblastoma xenografts by magnetic resonance imaging (MRI) with high sensitivity and durability in vivo, but also intraoperatively guide tumor excision with the assistance of a handheld Raman scanner. Microscopy studies verify the precisely demarcated tumor margin marked by the assembled nanoprobes. Taking advantage of the nanoprobes' rapid excretion rate and the extracellular acidification as a hallmark of solid tumors, these nanoprobes are promising in improving brain‐tumor surgical outcome with high specificity, safety, and universality.
Keywords:brain tumors  gold nanoparticles  image‐guided surgery  magnetic resonance imaging  surface‐enhanced resonance Raman scattering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号