首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents
Authors:Mahsa Javidi Nobarzad  Maryam Tahmasebpoor  Mohammad Heidari  Covadonga Pevida
Affiliation:1. Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 51666-16471, Iran2. Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Oviedo 33011, Spain
Abstract:Carbon nanotubes-based materials have been identified as promising sorbents for efficient CO2 capture in fluidized beds, suffering from insufficient contact with CO2 for the high-level CO2 capture capacity. This study focuses on promoting the fluidizability of hard-to-fluidize pure and synthesized silica-coated amine-functionalized carbon nanotubes. The novel synthesized sorbent presents a superior sorption capacity of about 25 times higher than pure carbon nanotubes during 5 consecutive adsorption/regeneration cycles. The low-cost fluidizable-SiO2 nanoparticles are used as assistant material to improve the fluidity of carbon nanotubes-based sorbents. Results reveal that a minimum amount of 7.5 and 5 wt% SiO2 nanoparticles are required to achieve an agglomerate particulate fluidization behavior for pure and synthesized carbon nanotubes, respectively. Pure carbon nanotubes + 7.5 wt% SiO2 and synthesized carbon nanotubes + 5 wt% SiO2 indicates an agglomerate particulate fluidization characteristic, including the high-level bed expansion ratio, low minimum fluidization velocity (1.5 and 1.6 cm·s–1), high Richardson−Zakin index (5.2 and 5.3 > 5), and low Π value (83.2 and 84.8 < 100, respectively). Chemical modification of carbon nanotubes causes not only enhanced CO 2 uptake capacity but also decreases the required amount of silica additive to reach a homogeneous fluidization behavior for synthesized carbon nanotubes sorbent.
Keywords:CO2 capture  CNT-based sorbents  fluidization  SiO2 nanoparticles  fluidized bed reactors  
点击此处可从《Frontiers of Chemical Science and Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Chemical Science and Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号