首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear blind source separation using kernels
Authors:Martinez   D. Bray   A.
Affiliation:LORIA-CNRS, Vandoeuvre-les-Nancy, France.
Abstract:We derive a new method for solving nonlinear blind source separation (BSS) problems by exploiting second-order statistics in a kernel induced feature space. This paper extends a new and efficient closed-form linear algorithm to the nonlinear domain using the kernel trick originally applied in support vector machines (SVMs). This technique could likewise be applied to other linear covariance-based source separation algorithms. Experiments on realistic nonlinear mixtures of speech signals, gas multisensor data, and visual disparity data illustrate the applicability of our approach.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号