首页 | 本学科首页   官方微博 | 高级检索  
     


Creep expansion of porous Ti-6Al-4V sandwich structures
Authors:Douglas T. Queheillalt  Haydn N. G. Wadley  Bill W. Choi  Daniel S. Schwartz
Affiliation:(1) the Intelligent Processing of Materials Laboratory, Materials Science Department, University of Virginia, 22903 Charlottesville, VA;(2) Present address: Research Associate with the Intelligent Processing of Materials Laboratory, Materials Science Department, University of Virginia, USA;(3) Lawrence Livermore National Laboratory, 94551 Livermore, CA;(4) The Boeing Company, 63166 St. Louis, MO
Abstract:Low-density titanium alloy sandwich structures consisting of a porous core and fully dense face sheets can be produced by consolidating argon gas charged powder compacts followed by not rolling and annealing to expand the gas-filled pores. Little is known about the rate of pore expansion, its dependence upon temperature, and the morphological evolution of the pore shape during expansion. In situ eddy current and laser ultrasonic sensors have been combined with metallographic and texture measurements to measure the relative density, the elastic moduli, and the microstructural evolution of Ti-6Al-4V sandwich panels during the annealing stage of low-density core (LDC) processing. The eddy current data indicated that expansion began during, the heating phase, reached a maximum expansion rate (Δ) of 2 × 10−5 s−1 at approximately 685 °C, and had almost ceased (Δ < 1 × 10−6 s−1) after annealing for 4 hours at 920 °C. The elastic moduli were found to decrease with increasing temperature and volume fraction of porosity. The initial (as-rolled) microstructure consisted of a lamellar α + β microstructure with an α-phase lath thickness of 2.0 μm and contained a distribution of oblate-shaped pores with aspect ratios of up to 10. During the expansion process, it recrystallized into an equiaxed α + β structure with an α-phase grain diameter of 7.5 μm with spheroidal pores with aspect ratios of up to 3. The combination of the two sensors was found to enable the in situ determination of both the porous cores relative density and its elastic properties. These are the two material indices that govern the elastic response of a sandwich structure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号