首页 | 本学科首页   官方微博 | 高级检索  
     

微磨料气射流成形加工表面粗糙度的研究
引用本文:李全来. 微磨料气射流成形加工表面粗糙度的研究[J]. 机械工程师, 2014, 0(12): 7-10
作者姓名:李全来
作者单位:北京工商大学材料与机械工程学院,北京100048
基金项目:北京市教育委员会科技发展计划面上项目(KM201310011003)
摘    要:通过微磨料气射流成形加工玻璃试验,研究了工艺参数及其交互作用对加工表面粗糙度的影响,建立了表面粗糙度的回归模型。结果表明,气压对表面粗糙度的影响最显著,其次是靶距和喷嘴横移速度的交互作用、气压和靶距的交互作用以及靶距,而气压和喷嘴横移速度的交互作用、喷嘴横移速度对表面粗糙度的影响相对较小。表面粗糙度随着气压的增加而增大,随着靶距和喷嘴横移速度的增加先减小后增大。选用中低气压和较大靶距的组合有利于降低表面粗糙度。方差分析和残差检验的结果表明回归模型可以有效地预测表面粗糙度。

关 键 词:微磨料气射流  表面粗糙度  工艺参数  交互作用  回归模型

Surface Roughness Analysis on Micro Abrasive Air Jet Forming Technology
LI Quanlai. Surface Roughness Analysis on Micro Abrasive Air Jet Forming Technology[J]. Mechanical Engineer, 2014, 0(12): 7-10
Authors:LI Quanlai
Affiliation:LI Quanlai(School of Material and Mechanical Engineering, Beijing Technology and Business University,Beijing 100048,China)
Abstract:Based on an experiment of micro abrasive air jet machining of glass, the influences of processing parameters and their interaction effects on the surface roughness were studied. The surface roughness regression model was developed. The results indicate that the air pressure has the most significant effect on the surface roughness. The effects of the interaction of standoff distance and nozzle traverse speed, the interaction of air pressure and standoff distance, as well as standoff distance are the next place. While the interaction of air pressure and nozzle traverse speed, and nozzle traverse speed have relative small effects on the surface roughness. The surface roughness increases with an increase in air pressure, while it decreases firstly and then increases with an increase in standoff distance and nozzle traverse speed. The combination of low-and-medium air pressure and high standoff distance result in low surface roughness. The regression model can give an adequate prediction of surface roughness according to the analysis of variance and residual analysis.
Keywords:micro abrasive air jet  surface roughness  processing parameter  interaction  regression model
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号