首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进扩展卡尔曼粒子滤波的目标跟踪算法*
引用本文:王华剑,景占荣,羊彦. 基于改进扩展卡尔曼粒子滤波的目标跟踪算法*[J]. 计算机应用研究, 2011, 28(5): 1634-1636. DOI: 10.3969/j.issn.1001-3695.2011.05.010
作者姓名:王华剑  景占荣  羊彦
作者单位:西北工业大学,电子信息学院,西安,710072
基金项目:国家自然科学基金资助项目
摘    要:针对扩展卡尔曼粒子滤波算法滤波精度较低和粒子退化的问题,将马尔可夫链蒙特卡罗(MCMC)方法和扩展卡尔曼粒子滤波相结合,应用于目标跟踪。该算法利用扩展卡尔曼滤波来构造粒子滤波的建议分布函数,使建议分布函数能够融入最新的观测信息,以便得到更符合真实状态的后验概率分布,同时引入MCMC方法对所选的建议分布进行优化处理,使抽样粒子更加多样性。仿真结果表明,该算法能有效地解决粒子贫化问题并提高滤波精度。

关 键 词:目标跟踪;粒子滤波;扩展卡尔曼滤波;马尔可夫链蒙特卡罗方法;非线性系统
收稿时间:2010-10-25
修稿时间:2011-04-12

Target tracking algorithm based on improved extend Kalman particle filter
WANG Hua-jian,JING Zhan-rong,YANG Yan. Target tracking algorithm based on improved extend Kalman particle filter[J]. Application Research of Computers, 2011, 28(5): 1634-1636. DOI: 10.3969/j.issn.1001-3695.2011.05.010
Authors:WANG Hua-jian  JING Zhan-rong  YANG Yan
Affiliation:WANG Hua-jian,JING Zhan-rong,YANG Yan (School of Electronics & Information Engineering,Northwestern Polytechnical University,Xi'an 710072,China)
Abstract:Considering the problem of poor tracking accuracy and particle degradation in the traditional particle filter algorithm, a new improved particle filter algorithm with the Markov chain Monte Carlo (MCMC) and extended particle filter is discussed. The algorithm used Extend Kalman filter to generate a proposal distribution, which can integrate latest observation information to get the posterior probability distribution that was more in line with the true state. Meanwhile, the algorithm was optimized by MCMC sampling method, which maked the particles more diverse. The simulation results show that the improved extend Kalman particle filter solves particle degradation effectively and improves tracking accuracy.
Keywords:Target Tracking   Particle Filter   Extend Kalman Filter   Markov Chain Monte Carlo   Nonlinear
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号