Assembly behavior and monolayer characteristics of OH-terminated alkanethiol on Au(111): in situ scanning tunneling microscopy and electrochemical studies |
| |
Authors: | Liu Yung-Fang Yang Yaw-Chia Lee Yuh-Lang |
| |
Affiliation: | Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan. |
| |
Abstract: | Self-assembled monolayers (SAMs) of 6-mercapto-1-hexanol (MHO) on an Au(111) electrode were prepared in an electrochemical system. The adsorption behavior of MHO and the time-dependent organization of the SAM were investigated by in situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV). The results show that a potential higher than 0.28?V (relative to RHE) is required to induce the adsorption of MHO. At 0.28?V, the MHO molecules adsorb in a flat-lying orientation, forming an ordered striped phase with a molecular arrangement of ([Formula: see text]). However, the adlayer is not stable at this potential. The adsorbed striped phase may recover to the herringbone feature of the gold substrate due to the desorption of adsorbed MHO. At a higher potential (0.35?V), the adlayer becomes stable and can undergo a phase evolution from the striped phase to a condensed structure, identified as c([Formula: see text]). This structure can also be described as a c(4 × 2) superlattice of a [Formula: see text] hexagonal adlattice. The surface coverage of the MHO SAM is identical to the saturated structure of an 11-mercapto-1-undecanol (MUO) SAM reported in a previous work, [Formula: see text]. However, the STM image of MHO adlayer shows a modulation in intensity, reflecting the presence of various conformations of adsorbed molecules. This result is attributed to the shorter chain length of MHO, which gives a weaker?van der Waals interaction between adsorbed molecules. This effect also results in a higher charge permeability across the adlayer and a lower striping potential to an MHO SAM. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|