首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures
Authors:Khoo Hwa Seng  Tseng Fan-Gang
Affiliation:Nano/Micro Biotechnology and Fluidics Lab, Engineering and System Science Department, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China.
Abstract:Three-dimensional nano-architectures with varying shape, morphology and size were fabricated by the phase separation of methyltrichlorosilane (CH(3)SiCl(3)) on commercially available glass and SiO(2) substrates. By changing the synthesis conditions, CH(3)SiCl(3) nanostructures evolved from discrete to quasi-network or from fibrous to spherical forms. Individual nanofibers and nanospheres have diameters of 18-90 and 240-300?nm, respectively, while the film thicknesses could reach 320?nm. The possible mechanisms for the three-dimensional growth of nanofibers and nanospheres are proposed. The resultant morphologies exhibited two main energy states: Wenzel and Cassie-Baxter states. Moreover, superhydrophobic surfaces with both high contact angle and high hysteresis resulted from the growth of the nanostructures. The new approaches presented herein are important additions to the current range of surface modification methods and could harness novel physical and chemical properties conducive to optimal performance in biosensing, antistiction, droplet manipulation, drag reduction, protein adsorption, and cell adhesion studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号