首页 | 本学科首页   官方微博 | 高级检索  
     


A theoretical study of evaporative heat transfer in high‐velocity two‐phase flow of air–water in a small vertical tube
Authors:Jie Yi  Zhen‐Hua Liu  Jing Wang
Abstract:A theoretical study was performed to investigate the evaporative heat transfer of high‐velocity two‐phase flow of air–water in a small vertical tube under both heating conditions of constant wall temperature and constant heat flux. A simplified two‐phase flow boundary layer model was used to evaluate the evaporative heat transfer characteristics of the annular two‐phase flow. The analytical results show that the gravitational force, the gas–liquid surface tension force, and the inertial force are much smaller than the frictional force and hence can be neglected for a small tube. The evaporative heat transfer characteristics of the small tube with constant wall temperature are quite close to those of the small tube with constant heat flux. The mechanism of the heat transfer enhancement is the forced convective evaporation on the surface of the thin liquid film. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 430–444, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10110
Keywords:two‐phase flow  evaporative heat transfer  phase change  enhanced heat transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号