首页 | 本学科首页   官方微博 | 高级检索  
     


HONEI: A collection of libraries for numerical computations targeting multiple processor architectures
Authors:Danny van Dyk  Markus Geveler  Sven Mallach  Dirk Ribbrock  Dominik Göddeke  Carsten Gutwenger
Affiliation:aInstitut für Physik, TU Dortmund, Germany;bAngewandte Mathematik, TU Dortmund, Germany;cInformatik, TU Dortmund, Germany
Abstract:We present HONEI, an open-source collection of libraries offering a hardware oriented approach to numerical calculations. HONEI abstracts the hardware, and applications written on top of HONEI can be executed on a wide range of computer architectures such as CPUs, GPUs and the Cell processor. We demonstrate the flexibility and performance of our approach with two test applications, a Finite Element multigrid solver for the Poisson problem and a robust and fast simulation of shallow water waves. By linking against HONEI's libraries, we achieve a two-fold speedup over straight forward C++ code using HONEI's SSE backend, and additional 3–4 and 4–16 times faster execution on the Cell and a GPU. A second important aspect of our approach is that the full performance capabilities of the hardware under consideration can be exploited by adding optimised application-specific operations to the HONEI libraries. HONEI provides all necessary infrastructure for development and evaluation of such kernels, significantly simplifying their development.

Program summary

Program title: HONEICatalogue identifier: AEDW_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDW_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: GPLv2No. of lines in distributed program, including test data, etc.: 216 180No. of bytes in distributed program, including test data, etc.: 1 270 140Distribution format: tar.gzProgramming language: C++Computer: x86, x86_64, NVIDIA CUDA GPUs, Cell blades and PlayStation 3Operating system: LinuxRAM: at least 500 MB freeClassification: 4.8, 4.3, 6.1External routines: SSE: none; 1] for GPU, 2] for Cell backendNature of problem: Computational science in general and numerical simulation in particular have reached a turning point. The revolution developers are facing is not primarily driven by a change in (problem-specific) methodology, but rather by the fundamental paradigm shift of the underlying hardware towards heterogeneity and parallelism. This is particularly relevant for data-intensive problems stemming from discretisations with local support, such as finite differences, volumes and elements.Solution method: To address these issues, we present a hardware aware collection of libraries combining the advantages of modern software techniques and hardware oriented programming. Applications built on top of these libraries can be configured trivially to execute on CPUs, GPUs or the Cell processor. In order to evaluate the performance and accuracy of our approach, we provide two domain specific applications; a multigrid solver for the Poisson problem and a fully explicit solver for 2D shallow water equations.Restrictions: HONEI is actively being developed, and its feature list is continuously expanded. Not all combinations of operations and architectures might be supported in earlier versions of the code. Obtaining snapshots from http://www.honei.org is recommended.Unusual features: The considered applications as well as all library operations can be run on NVIDIA GPUs and the Cell BE.Running time: Depending on the application, and the input sizes. The Poisson solver executes in few seconds, while the SWE solver requires up to 5 minutes for large spatial discretisations or small timesteps.References:
  • 1] 
    http://www.nvidia.com/cuda.
  • 2] 
    http://www.ibm.com/developerworks/power/cell.
Keywords:PACS: 02  70  -c  07  05  Bx  89  20  Ff  47  11  -j
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号