首页 | 本学科首页   官方微博 | 高级检索  
     

地下工程支护效果的ARMA预测模型及应用
引用本文:李启月,陈亮,范作鹏,许杰. 地下工程支护效果的ARMA预测模型及应用[J]. 矿冶工程, 2013, 33(3): 8-12. DOI: 10.3969/j.issn.0253-6099.2013.03.003
作者姓名:李启月  陈亮  范作鹏  许杰
作者单位:中南大学 资源与安全工程学院, 湖南 长沙 410083
基金项目:湖南省自然科学基金,教育部博士点基金
摘    要:基于时间序列分析理论, 建立了地下工程支护效果的自回归滑动平均模型(ARMA), 将顶板累积垂直岩移量和锚杆轴力作为评价指标, 提取监测数据趋势项及其平稳残差时序, 对顶板支护效果进行预测。现场应用表明, ARMA模型预测的顶板累积垂直岩移量及锚杆轴力值与实测值相比, 相对误差分别不超过3%和2%; 与GA-BP神经网络法相比, ARMA模型预测结果的精度显著提高。

关 键 词:地下工程  支护效果预测  时间序列分析  ARMA模型  
收稿时间:2012-12-17

ARMA Model and Its Application in Prediction of Underground Engineering Supporting Effect
LI Qi-yue , CHEN Liang , FAN Zuo-peng , XU Jie. ARMA Model and Its Application in Prediction of Underground Engineering Supporting Effect[J]. Mining and Metallurgical Engineering, 2013, 33(3): 8-12. DOI: 10.3969/j.issn.0253-6099.2013.03.003
Authors:LI Qi-yue    CHEN Liang    FAN Zuo-peng    XU Jie
Affiliation:School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
Abstract:Based on time series analysis, an ARMA model was proposed to predict the supporting effect in underground engineering. By taking cumulative vertical movement of roof rock and axial force of anchor bolt as evaluation indicators, the supporting of roof underground was predicted by applying the trend term of residual time series. Field application showed that the cumulative vertical movement of roof rock and axial force of anchor bolt predicted by ARMA model statistical testing were compared with the practical measurement, with the relative error not less than 3% and 2%, respectively. Compared with the accuracy of GA-BP neural network, ARMA model has greatly improved the accuracy of prediction.
Keywords:underground engineering  supporting effect prediction  time series analysis  ARMA model
本文献已被 万方数据 等数据库收录!
点击此处可从《矿冶工程》浏览原始摘要信息
点击此处可从《矿冶工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号