首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的基于粗集理论的有导师学习方法
引用本文:吴武琴,高晓红,刘文奇. 一种改进的基于粗集理论的有导师学习方法[J]. 昆明理工大学学报(自然科学版), 2008, 33(3): 122-124
作者姓名:吴武琴  高晓红  刘文奇
作者单位:昆明冶金高等专科学校公共课部,云南昆明,650093;昆明理工大学理学院,云南昆明,650093
摘    要:属性约简和属性值约简是基于粗集理论进行有导师学习的基础,在分析经典约简算法的基础上,根据粗集理论中属性的依赖度和重要度等性质,提出一种改进的约简方法,以获取简洁的决策规则,从而使有导师学习变得既快捷又准确.并通过实例验证了该算法的正确性和有效性.

关 键 词:粗糙集  机器学习  属性约简

A Modified Method of Learning from Examples Based on Rough Set
WU Wu-qin,GAO Xiao-hong,LIU Wen-qi. A Modified Method of Learning from Examples Based on Rough Set[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2008, 33(3): 122-124
Authors:WU Wu-qin  GAO Xiao-hong  LIU Wen-qi
Abstract:Attribute reduction and value reduction are the basis of learning from examples based on rough set.This paper studies the problem of attribute reduction firstly.Then,it puts forward an improved reduction algorithm based on the dependence and importance of attribute to get compact rules,which improves the efficiency of learning from examples.Lastly,the correctness and effectiveness of the new algorithm are shown by an example.
Keywords:rough set  machine learning  attribute reduction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号