首页 | 本学科首页   官方微博 | 高级检索  
     


Performance of geosynthetic-reinforced soil foundations across a normal fault
Affiliation:1. Department of Civil Engineering, National Taiwan University, Taiwan;2. Department of Civil Engineering, National Central University, Taiwan
Abstract:This paper presents a series of model tests on geosynthetic-reinforced soil (GRS) foundations across a normal fault. The aim was to evaluate the performance of reinforced foundations as a mitigation measure for surface faulting hazards. Experimental tests modeled a 3-m thick foundation in prototype subjected to a fault displacement up to 90 cm. Test variables included the number of reinforcement layers, reinforcement stiffness and location, and foundation height. Digital image analysis techniques were applied to determine the ground settlement profile, angular distortion, shear rupture propagation, and mobilized reinforcement tensile strain at various magnitudes of fault offset. Test results revealed that compared with the unreinforced foundation, reinforcement inclusion could effectively prevent the shear rupture propagating from the bedrock fault to the ground surface. It also spread the differential settlement to a wider influential zone, resulting in an average reduction of 60% in the fault-induced angular distortion at the ground surface. The maximum angular distortion decreased as the foundation height, number of reinforcement layers, and reinforcement stiffness increased. Relationships between the maximum angular distortion and maximum mobilized reinforcement tensile strain with fault displacement were therefore established. Based on the findings from this study, design suggestions and implications are discussed.
Keywords:Geosynthetics  Geosynthetic-reinforced soil foundation  Normal fault  Differential settlement  Angular distortion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号