首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal conductivity and mechanical properties of various cross-section types carbon fiber-reinforced composites
Authors:Hwan-Boh Shim  Min-Kang Seo  Soo-Jin Park
Affiliation:(1) Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon, 305-600, South Korea
Abstract:In this work, to study the characteristics of carbon fiber-reinforced composites with different fiber cross-section types, such as round, C, and hollow-shape, the thermal conductivity and mechanical properties were investigated and compared. The thermal conductivity was measured by means of steady-state method to the parallel and perpendicular direction of reinforcing fibers. The mechanical properties were evaluated by a variety of test methods i.e., flexural, interlaminar shear strength, and impact strength. As a result, it was found that the thermal conductivity was greatly depended on the cross-section type of the reinforcing fibers, as well as, the reinforcing orientation. Especially, the anisotropy factor (k///kbottom) and the thermal diffusivity factor (agr///agrbottom) of C and hollow-type carbon fiber-reinforced composites showed about two times higher values than those of round-type one. Also, the mechanical results showed that C and hollow-type carbon fibers-reinforced composites had higher values than those of round-type one in all mechanical tested. These results were probably due to the basic properties of non-circular (C and hollow-type) carbon fiber which can improve interfacial binding forces and widen interfacial contact area between reinforcement and matrix, resulting in effectively transferring the applied stress.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号